A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres.

نویسندگان

  • Changhyun Pang
  • Gil-Yong Lee
  • Tae-il Kim
  • Sang Moon Kim
  • Hong Nam Kim
  • Sung-Hoon Ahn
  • Kahp-Yang Suh
چکیده

Flexible skin-attachable strain-gauge sensors are an essential component in the development of artificial systems that can mimic the complex characteristics of the human skin. In general, such sensors contain a number of circuits or complex layered matrix arrays. Here, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. The sensor response is highly repeatable and reproducible up to 10,000 cycles with excellent on/off switching behaviour. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Modeling, and Construction of a New Tactile Sensor for Measuring Contact-Force

This paper presents the design, modeling, and testing of a flexible tactile sensor and its applications. This sensor is made of polymer materials and can detect the 2D surface texture image and contact-force estimation. The sensing mechanism is based on the novel contact deflection effect of a membrane. We measure the deflection of the membrane with measuring the strain in the membrane with emb...

متن کامل

Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges

In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photoli...

متن کامل

Design and Simulation of a New Highly Sensitive Gas Sensor Based on Negative Refraction Photonic Crystal

In this paper, design and simulation of a new highly sensitive gas sensor based on a hybrid photonic crystal (PC) structure, containing negative and positive refractive index sections, is presented. It has been shown that using a PC with negative refraction in the first section, the transmitted power is concentrated on the entrance of the sensing channel, and the transmission of the proposed se...

متن کامل

Design and simulation of a highly sensitive photonic crystal temperature sensor based on a cavity filled with the distilled water

In this paper design and two dimensional (2D) simulation of a photonic crystal highly sensitive temperature sensor is presented. The 2D simulations are based on finite-difference time-domain (FDTD) method and are done using Rsoft software. The device is constructed using a cavity filled with the distilled water located in the center of the photonic crystal waveguide. The operation of the propos...

متن کامل

Flexible piezotronic strain sensor.

Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2012